8 research outputs found

    Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease

    No full text
    A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease

    The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine

    Get PDF
    SIGNIFICANCE: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not administration of antioxidants is ineffective, suggesting our current understanding of the underlying regulatory processes is incomplete. Recent Advances. Similar to reactive oxygen and nitrogen species (ROS, RNS), reactive sulfur species (RSS) are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept coined the reactive species interactome (RSI). The RSI is a primeval multi-level redox-regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stresses to enhance fitness and resilience at the local and whole-organism level. CRITICAL ISSUES: To better characterise the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems and effects on cellular, organ and whole-organism bioenergetics using systems-level/network analyses. FUTURE DIRECTIONS: Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other stresses will provide new prevention/intervention opportunities for personalized medicine

    A multi-level analytical approach for detection and visualization of intracellular NO production and nitrosation events using diaminofluoresceins

    Get PDF
    Diaminofluoresceins are widely used probes for detection and intracellular localization of NO formation in cultured/isolated cells and intact tissues. The fluorinated derivative, 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), has gained increasing popularity in recent years due to its improved NO-sensitivity, pH-stability, and resistance to photo-bleaching compared to the first-generation compound, DAF-2. Detection of NO production by either reagent relies on conversion of the parent compound into a fluorescent triazole, DAF-FM-T and DAF-2-T, respectively. While this reaction is specific for NO and/or reactive nitrosating species, it is also affected by the presence of oxidants/antioxidants. Moreover, the reaction with other molecules can lead to the formation of fluorescent products other than the expected triazole. Thus additional controls and structural confirmation of the reaction products are essential. Using human red blood cells as an exemplary cellular system we here describe robust protocols for the analysis of intracellular DAF-FM-T formation using an array of fluorescence-based methods (laser-scanning fluorescence microscopy, flow cytometry and fluorimetry) and analytical separation techniques (reversed-phase HPLC and LC-MS/MS). When used in combination, these assays afford unequivocal identification of the fluorescent signal as being derived from NO and are applicable to most other cellular systems without or with only minor modifications

    Estimated dietary intakes and sources of flavanols in the German population (German National Nutrition Survey II)

    No full text
    Background/Objectives Data from intervention studies suggest a beneficial effect of flavanols on vascular health. However, insufficient data on their intake have delayed the assessment of their health benefits. The aim of this study was to estimate intake of flavanols and their main sources among people living in Germany. Subjects/Methods Data from diet history interviews of the German National Nutrition Survey II for 15,371 people across Germany aged 14–80 years were analyzed. The FLAVIOLA Flavanol Food Composition Database was compiled using the latest US Department of Agriculture and Phenol-Explorer Databases and expanded to include recipes and retention factors. Results Mean intake of total flavanols, flavan-3-ol monomers, proanthocyanidins (PA), and theaflavins in Germany was 386, 120, 196, and 70 mg/day, respectively. Women had higher intakes of total flavanols (399 mg/day) than men (372 mg/day) in all age groups, with the exception of the elderly. Similar results were observed for monomers (108 mg/day for men, 131 mg/day for women) and PA (190 mg/day; 203 mg/day), although intake of theaflavins was higher in men (74 mg/day; 66 mg/day). There was an age gradient with an increase in total flavanols, monomers, and theaflavins across the age groups. The major contributor of total flavanols in all subjects was pome fruits (27 %) followed by black tea (25 %). Conclusions This study demonstrated age- and sex-related variations in the intake and sources of dietary flavanols in Germany. The current analysis will provide a valuable tool in clarifying and confirming the potential health benefits of flavanols

    Associations between flavan-3-ol intake and CVD risk in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk)

    No full text
    Dietary intervention studies suggest that flavan-3-ol intake can improve vascular function and reduce the risk of cardiovascular diseases (CVD). However, results from prospective studies failed to show a consistent beneficial effect. Associations between flavan-3-ol intake and CVD risk in the Norfolk arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk) were investigated. Data were available from 24,885 (11,252 men; 13,633 women) participants, recruited between 1993 and 1997 into the EPIC-Norfolk study. Flavan-3-ol intake was assessed using 7-day food diaries and the FLAVIOLA Flavanol Food Composition database. Missing data for plasma cholesterol and vitamin C were imputed using multiple imputation. Associations between flavan-3-ol intake and blood pressure at baseline were determined using linear regression models. Associations with CVD risk were estimated using Cox regression analyses. Median intake of total flavan-3-ols was 1034 mg/d (range: 0–8531 mg/d) for men and 970 mg/d (0–6695 mg/d) for women, median intake of flavan-3-ol monomers was 233 mg/d (0–3248 mg/d) for men and 217 (0–2712 mg/d) for women. There were no consistent associations between flavan-3-ol monomer intake and baseline systolic and diastolic blood pressure (BP). After 286,147 person-years of follow-up, there were 8463 cardiovascular events and 1987 CVD related deaths; no consistent association between flavan-3-ol intake and CVD risk (HR 0.93, 95% CI: 0.87; 1.00; Q1 vs Q5) or mortality was observed (HR 0.93, 95% CI: 0.84; 1.04). Flavan-3-ol intake in EPIC-Norfolk is not sufficient to achieve a statistically significant reduction in CVD risk

    White açaí juice (Euterpe oleracea): phenolic composition by LC-ESI-MS/MS, antioxidant capacity and inhibition effect on the formation of colorectal cancer related compounds

    No full text
    The phenolic compounds profile, the antioxidant capacity towards reactive oxygen species and the capacity to inhibit the nitrosation reaction (under simulated gastric environment) of white açaí (Euterpe oleracea) was investigated for the first time. The effect of time and ethanol concentration on the phenolic compounds extraction of white açaí was evaluated through a central composite design 22, using total phenolic compounds as response. Optimum conditions were 10 min extraction, 35:65 ethanol:water v/v. The phenolic profile was analysed by ultra-high performance liquid chromatography with electrospray ionisation and triple-quadrupole mass spectrometer in tandem (LC-MS/MS). White açaí contained vanillic acid and the isomers orientin and isoorientin as major phenolic compounds. In addition, the sample showed scavenging capacity towards ROOradical dot and HOCl. Lastly, it exhibited capacity for inhibiting nitroso compounds formation, suggesting a potential protective effect of white açaí towards the formation of colorectal cancer-related compounds derived from red meat intake

    N-nitroso compound exposure-associated transcriptomic profiles are indicative of an increased risk for colorectal cancer

    Get PDF
    Endogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk. Inflammatory bowel disease (IBD) patients diagnosed with ulcerative colitis and irritable bowel syndrome patients without inflammation, serving as controls, were therefore recruited. Fecal NOC were demonstrated in the majority of subjects. By associating gene expression levels of all subjects to fecal NOC levels, we identified a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may potentially induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending NOC-induced carcinogenesis. In addition, pro-inflammatory transcriptomic modifications were identified in visually non-inflamed regions of the IBD colon. However, fecal NOC levels were slightly but not significantly increased in IBD patients, suggesting that inflammation did not strongly stimulate NOC formation. We conclude that NOC exposure is associated with gene expression modifications in the human colon that may suggest a potential role of these compounds in CRC development
    corecore